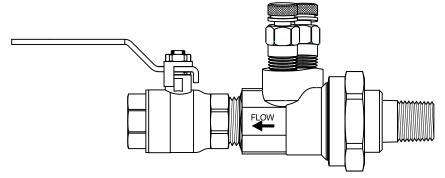
					DD Hydronic	
			Manual	Bala	PRO Hydronic Specialties ncing 3-Way Kit - V3IV Submittal	
		1				
	#	Size	Connection	Туре		
Runout	1					R 🗲
Coil	2				Model CBV 3 1 3 Model AU w/ PT & AV	
TCV	3		MPT			
Bypass Out	4				5	
Bypass In	5					
Service	es pro	ovided fo	r additional fee	e:		
Extended	Comp	oonents	Yes	No		
Factory M	ounte	ed TCV	Yes	No		
Stainless	Stee	el Trim	Yes	No		
Bag	Ν Τα	9	Yes	No		
			in SWT ONLY		Model IVY w/ PT & DV	


PRODUCT DESCRIPTION: The Manual Balancing Valve Kit is a packaged and partially preassembled grouping of components required to complete installation of a terminal unit. Temperature control valves, piping, and coils are supplied "by others". Mounting and testing of the customer supplied TCV is available at an additional charge.

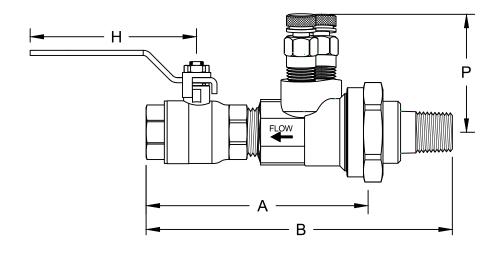
QUANTITY	GPM	TA	gging i	NFORMATION		
JOB NAME		REPRESEN	TATIVE			
ENGINEER		REF/PO#		1	DATE	
CONTRACTO	DR	SUBMITTED) BY		DATE	

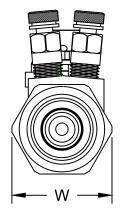
PRO Hydronic Specialties, L.L.C. www.prohydronicspecialties.com

Combination Ball Valve/Venturi

PRODUCT DESCRIPTION: The CBV flow balancing brass venturi provides highly accurate flow measurement capabilities. The efficient low loss venturi design provides effective flow balancing with minimal system pressure loss. The CBV includes a brass ball valve with memory stop, and a venturi with an integral union. The CBV comes standard with two pressure/temperature ports for instrument readings. The union side incorporates an o-ring for maximum sealing protection. The union connection options include FNPT, MNPT, SWT, and a variety of reductions.

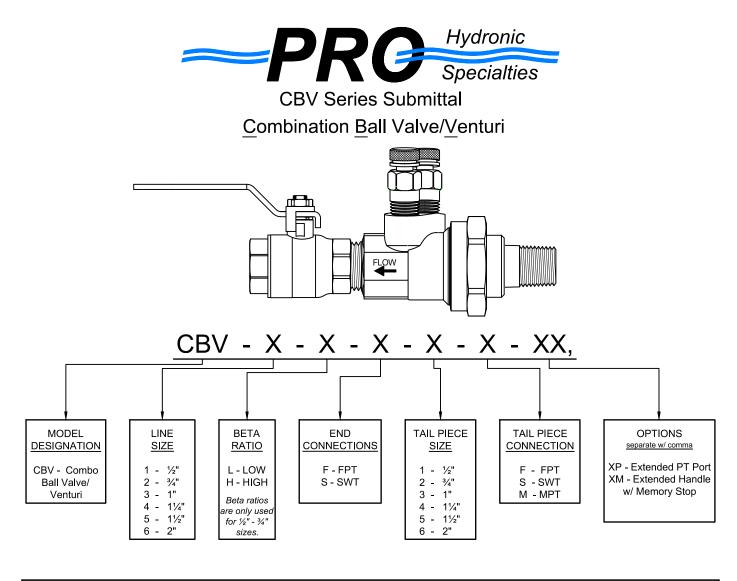
NOTE: If the same size male, female, sweat, or a reducing male tail piece is used, no extra pipe diameter is required.


REC	OMMEND	ED FLOW R	ANGES (GI	PM)	STAN	DARD MATERIAL SPECIFICATIONS			
Model	Size	Minimum	@ 100"	@ 200"	Venturi	Cast Brass ASTM B763-08A			
CBV050L	1⁄2"	0.3	1.2	1.8	Ball Valve	Forged Brass ASTM B283-06			
CBV050H	1⁄2"	0.8	2.9	4.2	O-ring Tail Piece	EPDM Brass ASTM B124-09, B228-06, or B763-08A			
CBV075UL	3⁄4"	0.3	1.2	1.8	Union Nut	Brass ASTM B455			
CBV075L	³ ⁄4"	0.8	2.9	4.2	PT Seal Handle	EPDM Dual Durometer Core Chrome Plated Steel			
CBV075H	3/4"	1.8	6.1	8.9	Memory Stop	302 Stainless Steel			
CBV100	1"	2.8	9.8	14.3	Stem Ball	Brass ASTM B124-09 - Blow-Out Proof Chrome Plated Brass			
CBV125	1¼"	4.8	16.4	24.0	Ball Seat	Teflon			
CBV150	11⁄2"	7.5	24.4	35.5	Packing Nut Packing Gland	Brass ASTM B124-09, B228-06, or B763-08A Teflon			
CBV200	2"	12.0	40.8	69.3					
Ma	STANDARD OPERATING SPECIFICATIONS Maximum Working Pressure: 600 WOG / CWP Maximum Operating Temperature: -22° F to 325° F								


Specification information is provided to assist and is given without obligation or warranty. The Company reserves the right to make changes in design, materials, and/or specifications without notice or liability.

PRODUCT SPECIFICATIONS:

- Devices shall have a 15° regain chamber for optimal pressure regain and minimal permanent pressure drop
- Venturi tube shall be independent of the throttling valve
- Venturi tube shall include proper pipe diameters for optimal accuracy
- Valve shall be designed with memory stop to limit flow once balanced
- The Model CBV shall have an accuracy rating of:
 - •• ±1% between 10" W.C. and 70" W.C.
 - •• ±3% between 5" W.C. and 150" W.C.
 - •• ±5% less than 5" W.C. and over 150" W.C.


Madal	Cino	A		ш	Р	14/	Cv **
Model	Size	FPT	SWT	Н	Р	W	UV ***
CBV050L	1/2	4.5	4.8	3.7	2.1	1.6	1.1
CBV050H	1⁄2	4.5	4.8	3.7	2.1	1.6	3.8
CBV075UL*	3⁄4	4.7	5.2	3.8	2 <u>.</u> 1	1.6	1.1
CBV075L	3⁄4	4.7	5.2	3.8	2.1	1.8	2.3
CBV075H	3⁄4	4.7	5.2	3.8	2.1	1.8	8.0
CBV100	1	5.1	5.7	5.0	2.2	2.1	13.4
CBV125	1¼	5.8	6.5	5.0	2.4	2.8	25
CBV150	1½	7.0	8.0	6.3	2 <u>.</u> 7	3.1	31
CBV200	2	7.6	8.7	6.2	3.0	3.8	87

Note: Dimensions listed do not include ProPress or any other special fittings or adapters. All dimensions, weights, and materials are subject to minor variations. Consult with factory for confirmation of dimensions, weights, and material specifications.

- * CBV075UL Tailpiece size is 1/2"
- ** Cv = Estimated with Union connection same as inlet, no reductions.

Size	Tail Piece	В	Weight	Size	Tail Piece	В	Weight
	- M	6.2	1.4		- M	6.0	1.4
1⁄2" SWT	1∕₂" - F	1⁄2" - F 5.5 1.3 1⁄2" FPT		1∕2" FPT	1∕₂" - F	5.1	1.3
	- S	5.5	1.3		- S	5.1	1.3
	- M	6.7	1.8		- M	6.5	1.8
	½" - F	6.3	1.8		½" − F	5.8	1.8
3⁄4" SWT	- S	6.0	1.7	3⁄4" FPT	- S	5.5	1.7
/4 5001	- M	6.8	1.8	/4	- M	6.5	1.8
	³∕₄" - F	6.0	1.7		³⁄₄" - F	5.5	1.8
	- S	6.0	1.7		- S	5.5	1.7
	½" - M	7.7	2.7		½" - M	7.1	2.7
	³⁄₄" - M	7.7	2.7		¾" - M	7.1	2.7
1" SWT	- M	7.7	2 <u>.</u> 7	1" FPT	- M	7.0	2.7
	1" - F	6.7	2.5		1" - F	6.0	2.5
	- S	6.7	2.5		- S	6.0	2.5
	½" - M	8.1	3.9		½" - M	7.5	3.9
	³∕₄" - M	8.3	4.0		³⁄₄" - M	7.7	4.0
11/4" SWT	1" - M	8.3	4.1	1¼" FPT	1" - M	7.7	4.1
174 000	- M	8.5	4.2	1/4 11 1	- M	7.7	4.1
	1¼" - F	7.5	3.9		1¼" - F	6.7	3.8
	- S	7.5	3.7		- S	7.0	3.7
	³∕₄" - M	9.7	5.6		³⁄₄" - M	9.3	5.7
	1" - M	10.7	6.1		1" - M	9.5	6.0
11/2" SWT	1¼" - M	10.7	6.2	1½" FPT	1¼" - M	9.5	6.1
1/2 3001	- M	10.5	6.0	1/2 ГГ 1	- M	9.5	6.0
	1½" - F	9.1	5.8		1½" - F	8.2	5.7
	- S	9.1	5.6		- S	8.2	5.6
	1" - M	11.7	9.3		1" - M	10.5	9.1
	1¼" - M	11.7	8.9		1¼" - M	10.5	8.6
2" SWT	1½" - M	11.7	8.9	2" FPT	1½" - M	10.5	8.7
2 3001	- M	11.7	9.0	2 FF1	- M	10.5	8.8
	2" - F	9.8	8.3		2" - F	8.7	8.1
	- S	10.1	8.0		- S	9.0	7.8

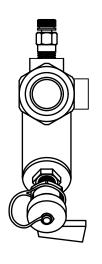
Note: Sweat size listed is nominal and will differ from the actual, measurable size. Not all available tailpiece connections are listed, please consult with factory for additional information.

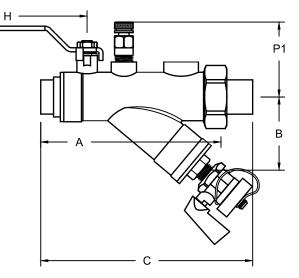
JOB NAME:	REPRESENTATIVE:		
ENGINEER:	REF/PO#:	DATE:	
CONTRACTOR:	SUBMITTED BY:	DATE:	
PART # (See table above)	TAGGING/JOB INFORMATION	GPM	QUANTITY

PRODUCT DESCRIPTION: The IVY is an integral ball valve, wye-strainer and union. The IVY uses a full-port ball valve for positive shut-off and offers two (2) predrilled ¼" taps for accessories to be installed. A ¼" standard port and by-pass tap are provided at the forward 12:00 position. The bypass port comes tapped and plugged for 2-way control valve configurations. The bypass port remains open on 3-way control valve configurations to install a bypass valve. (See IVY Series Dimensions page for bypass valve sizes.) An additional side port is available for factory drilling and tapping a ¼" port. The strainer has a 20-mesh stainless steel screen to aid in debris removal. The strainer cap has a ¼" tap for a hose-end drain valve. The ball valve has a PTFE packing gland, brass packing nut, and blow-out proof double o-ring stem seal. The fixed end connections may be FNPT or SWT. The union side connections Include MNPT, FNPT, SWT, and a variety of reductions.

Shown here w/ optional Drain Valve

	STANDARD MATERIAL SPECIFICATIONS	PORT LOCATIONS
Body O-Ring Tail Piece Union Nut PT Seal Handle Stem Ball Ball Seat Packing Gland Packing Nut	Forged Brass ASTM B283-06, or cast Brass ASTM B763-08A EPDM Brass ASTM B124-09, B228-06, or B763-08a Brass ASTM B455 EPDM Dual Durometer Core Chrome Plated Steel Brass ASTM B124-09 - Blow-Out Proof Crome Plated Brass - Full Port Teflon Teflon Brass ASTM B124-09, B228-06, or B763-08a	Side Port (Optional) S B Standard (Optional)
Maxin	num Working Pressure: 600 WOG / CWP num Operating Temperature: -22° F to 325° F	Drain


Specification information is provided to assist and is given without obligation or warranty. The Company reserves the right to make changes in design, materials, and/or specifications without notice or liability.


PRODUCT SPECIFICATIONS:

- Device shall have a full port isolation valve
- Device shall have a 20 mesh accessible strainer sleeve(0standard) or a 40 mesh accessible strainer sleeve (optional)
- Device shall have a blow down for debris removal
- Device shall have a functional by-pass
- The strainer screen shall have a minimum 8:1 ratio of total area against the internal pipe diameter

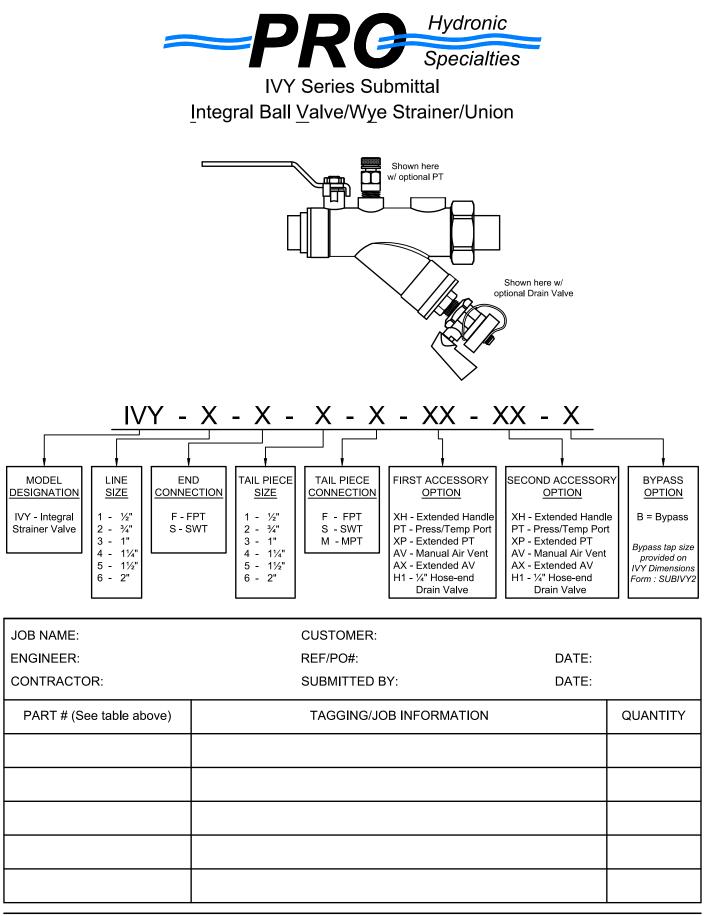
IVY Series Dimensions Integral Ball Valve/Wye Strainer/Union

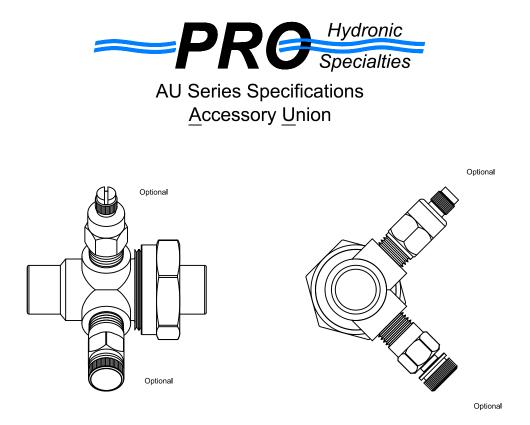
Model	Size	Bypass Size	А	в	н	P1	* R	** Cv	Size	Tail Piece	С	Weight	Size
IVY1-SWT	1/2	1/2	4.4	2.3	4.1	2.0	11:1	8	1/1 014/7	- M	6.0	1.8	
IVY2-SWT	3/4	1/2	5.4	2.2	3.8	2.1	8:1	9	1⁄2" SWT	1½" - F - S	5.1 5.1	1.8 1.8	1⁄2" FPT
IVY3-SWT	1	1/2	6,1	2.7	3.9	2.3	11:1	20		- M	7.0	2.2	
	<u> </u>	<u> </u>								½" − F	6.3	2.3	
IVY4-SWT	11/4"	3⁄4"	7.0	3.2	3.8	2.7	9:1	23	3∕4" SWT	- S	6.1	2.2	3⁄4" FPT
IVY5-SWT	1 ½"	3⁄4"	8.6	3.2	6.3	3.0	13 : 1	44		- M	7.0	2.3	
IVY6-SWT	2	1"	9.2	3.5	6.5	3.1	9:1	46		3¼" - F - S	6.1 6.2	2.2 2.2	
IVY1-FPT	1/2	1/2	4.2	2.3	4.1	2.0	11 : 1	7	,	½" - M	8.1	3.2	
IVY2-FPT	3⁄4	1/2	4.9	2.2	3.8	2.1	8:1	8		_{3∕4} " - M	8.1	3.7	
IVY3-FPT	1	1/2	5.4	2.7	3.9	2,3	11:1	19	1" SWT	/* - S	7.0	3.4 3.5	. 1" FPT
	<u> </u>						11.1			- M 1" - F	7.1	3.5	
IVY4-FPT	11/4"	³ ⁄4"	6.3	3.2	3.8	2.7	9:1	21			7.1	3.0	
IVY5-FPT	1 ½"	3⁄4"	7.5	3.2	6.3	3.0	13 : 1	45		 3∕4" - M		5.0	
IVY6-FPT	2"	1"	8.1	3.5	6.5	3.1	9:1	47		1" - M	9.0	5.0	

Note: Dimensions above do not include ProPress or any other special fittings or adapters. All dimensions, weights, and materials are subject to minor variations. Consult with factory for confirmation of dimensions, weights, and material specifications.

* R = Ratio of screen surface area to cross-sectional pipe diameter

** Cv = Estimated with Union Connection same as inlet, no reductions.


$\frac{1}{34"} \text{SWT} = \frac{-M}{34"} \frac{7.0}{-F} \frac{2.2}{6.3} \frac{2.3}{2.3} \frac{-M}{34"} \frac{7.0}{-F} \frac{2.2}{6.3} \frac{2.3}{34"} \frac{-M}{-F} \frac{6.1}{2.2} \frac{2.2}{-S} \frac{34''}{-F} \frac{FFT}{5.7} \frac{-M}{2.2} \frac{6.5}{-S} \frac{5.7}{2.1} \frac{-M}{34''} \frac{6.5}{-F} \frac{2.3}{5.7} \frac{2.1}{2.1} \frac{-M}{34''} \frac{6.5}{-F} \frac{2.3}{5.7} \frac{2.1}{2.2} \frac{-M}{34''} \frac{6.5}{-F} \frac{2.3}{5.7} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{34''}{-S} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{5.7} \frac{5.7}{2.2} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{-F} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{3.2}{-S} \frac{34''}{-F} \frac{-F}{-F} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{34''}{-F} \frac{-F}{-F} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{3.2}{-S} \frac{34''}{-F} \frac{-F}{-F} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{3.2}{-S} \frac{34''}{-F} \frac{-F}{-F} \frac{5.7}{5.7} \frac{2.2}{-S} \frac{3.2}{-S} \frac{34'''}{-F} \frac{-F}{-F} \frac{5.7}{-F} \frac{3.2}{-F} $
$1" \text{SWT} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1" \text{SWT} \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$1 \frac{1}{4}" \text{ SWT} \begin{array}{c c} -S & 8.2 & 4.6 \\ \hline -M & 9.0 & 5.1 \\ 1 \frac{1}{4}" & -F & 8.0 & 4.8 \end{array} \\ 1 \frac{1}{4}" \text{ FPT} \begin{array}{c c} -S & 7.7 & 4.7 \\ \hline -M & 8.2 & 5.1 \\ 1 \frac{1}{4}" & -F & 7.3 & 4.8 \end{array}$
$1 \frac{1}{1} \frac{1}{4} - F = 8.0 + 4.8 = 1 \frac{1}{4} - F = 7.3 + 4.8$
1" - M 11.0 7.6 1" - M 10.1 7.4
1 ½" SWT 1 ½" - S 10.0 7.1 1 ½" FPT 1 ½" - S 9.0 7.0 1 ½ - S 7.0 1 ½" - S 7.0 1 ½" - S 7.0 1 ½ - S 7.0 1 ½ - S 7.0 - S
1 /2 Swith - M 11.0 7.6 1 /2 FFI - M 10.1 7.4 1 /½" - F 9.8 7.3 1 ½" - F 9.0 7.2 - S 9.7 7.1 - S 8.8 7.0
1 ¹ / ₄ " - M 12.2 10.0 1 ¹ / ₄ " - M 11.1 9.7
2" SWT 1½" - M 12.2 8.6 11.0 9.0 2" FPT 1½" - M 11.1 9.7 8.8
- M 12.2 10.0 - M 11.1 9.8 2" - F 10.5 9.4 2" - F 9.2 9.1 - S 10.7 9.0 - S 9.5 8.8

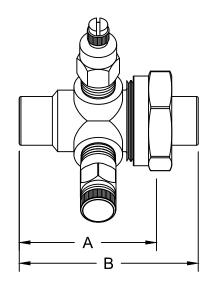

Tail Piece

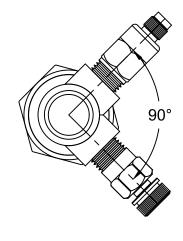
С

Weight

Note: Sweat size listed is nominal and will differ from the actual, measurable size.

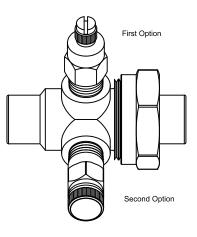
Product Description: The AU brass accessory union provides for component isolation. Port section contains two ¼" ports that come predrilled from the factory and are positioned 90° apart. The union side incorporates an o-ring for maximum sealing protection. Accessory union comes standard with ¼" plugs installed in the ports. Union side and port side connections available in NPTM, NPTF, and SWT. Rated at 600 WOG @ -22°F to 325°F.

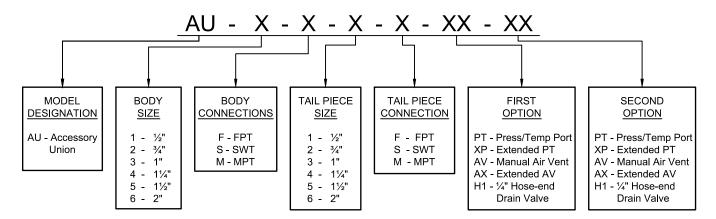

STANE	DARD MATERIAL SPECIFICATIONS						
Accessory Union O-Ring Tail Piece	Forged Brass ASTM B283-06 EPDM Brass ASTM B124-09, B228-06, or B763-08A						
Specification information is provided to assist and is given without obligation or warranty. The Company reserves the right to make changes in design, materials, and/or specifications without notice or liability.							


PRODUCT SPECIFICATIONS:

- 1/4" ports shall be located 90° distal on a rotational axis
- Integrated ports shall provide functionality for numerous options

AU Series Dimensions Accessory Union




MODEL	SIZE	А			LENGT	"H "B" / W	/EIGHT O	F PRO-A	U AND TA	AIL PIECI	E CONNE	CTION		
			½" M	lbs	½" S	lbs	1∕₂" F	lbs						
AU1M AU1S AU1F	1⁄2"	2.7 2.1 2.0	4.2 3.7 3.6	0.6 0.5 0.6	3.3 2.8 2.7	0.6 0.4 0.5	3.3 2.8 2.7	0.6 0.5 0.5						
			¹⁄₂" M	lbs	½" S	lbs	½" F	lbs	³∕₄" M	lbs	³∕₄" S	lbs	³⁄₄" F	lbs
AU2M AU2S AU2F	3⁄4"	2.5 2.1 2.1	4.0 3.7 3.6	0.7 0.6 0.7	3.2 2.9 2.8	0.6 0.5 0.6	3.6 3.3 3.2	0.8 0.6 0.8	4.2 3.8 3.8	0.7 0.6 0.7	3.2 2.9 2.8	0.6 0.5 0.6	3.3 2.9 2.9	0.7 0.6 0.7
			1∕₂" M	lbs	³⁄₄" M	lbs	³∕₄" S	lbs	1" M	lbs	1" S	lbs	1" F	lbs
AU3M AU3S AU3F	1"	2.6 2.4 2.1	4.6 4.5 4.1	1.1 1.0 1.0	4.6 4.5 4.1	1.1 1.0 1.1	3.4 3.3 3.0	0.9 0.7 0.8	4.6 4.5 4.1	1.2 1.0 1.1	3.6 3.5 3.3	0.9 0.8 0.9	3.5 3.4 3.1	1.0 0.8 0.9
			¹⁄₂" M	lbs	³⁄₄" M	lbs	1" M	lbs	1¼" M	lbs	1¼" S	lbs	1¼" F	lbs
AU4M AU4S AU4F	1¼"	3.0 3.0 2.3	4.7 4.7 4.1	1.7 1.5 1.6	5.0 4.9 4.3	1.8 1.7 1.8	5.0 4.9 4.3	1.9 1.7 1.8	5.0 5.0 4.4	1.9 1.8 1.9	4.1 4.1 3.4	1.5 1.4 1.5	4.0 4.0 3.3	1.6 1.5 1.6
			³∕₄" M	lbs	1" M	lbs	1¼" M	lbs	1½" M	lbs	1½" S	lbs	11⁄₂" F	lbs
AU5M AU5S AU5F	1½"	3.0 3.0 2.7	4.9 4.9 4.6	2.3 2.2 2.3	5.5 5.5 5.1	2.6 2.6 2.7	5.5 5.5 5.1	2.7 2.6 2.7	5.5 5.5 5.1	2.5 2.5 2.6	4.2 4.2 3.9	2.1 2.0 2.2	4.3 4.2 3.9	2.3 2.2 2.3
			1" M	lbs	1¼" M	lbs	1½" M	lbs	2" M	lbs	2" S	lbs	2" F	lbs
AU6M AU6S AU6F	2"	3.4 2.8 2.8	6.2 5.8 5.8	4.3 4.0 4.5	6.2 5.8 5.7	4.0 3.6 4.2	6.2 5.8 5.7	4.0 3.6 4.1	6.2 5.8 5.8	4.1 3.7 4.2	4.8 4.2 4.2	3.1 2.7 3.2	4.6 4.0 3.9	3.4 3.0 3.5

Note: Dimensions listed above do not include ProPress or any other special fittings or adapters. All dimensions, weights, and materials are subject to minor variations. Consult with factory for confirmation of dimensions, weights, and material specifications. Sweat size listed is nominal and will differ from the actual, measurable size.

AU Series Submittal <u>A</u>ccessory <u>U</u>nion

JOB NAME: ENGINEER: CONTRACTOR:	REPRESENTATIVE: REF/PO#: SUBMITTED BY:	DATE: DATE:	
PART # (See table above)	TAGGING/JOB INFORMATION		QUANTITY